Qiskit Quantum Hardware Testing via
Implementations of QKD Algorithms

Francisco Martin-Fernandez?

Pino Caballero-Gill

Daniel Escanez-Expésito?

LUniversity of La Laguna, Tenerife, Spain

jdanielescanez@gmail.com, pcaballe@ull.edu.es

2IBM Research, NY. USA

paco@ibm.com

SCAN ME

Introduction

This work proposes an in-depth study on the per-
formance of many different quantum algorithms
executed on the hardware made available by Qiskit
[1] from IBM. In particular, it describes the results
of the quantum library QuantumSolver [2] based
on the Qiskit SDK, which allows to operate with
a wide variety of quantum algorithms that can be
run from a command line or a web interface, on

real quantum hardware and simulators.

Figure 1: QuantumSolver Logo

Specifically, in its current version, the library con-
tains six easy-to-execute predefined quantum al-
gorithms. In order to corroborate the correct op-
eration of all the developed algorithms and to test
IBM's real quantum hardware and simulators, the
obtained results have been compared with those
presented by IBM [3]. For all of them, two ex-
ecutions of the experimental mode are carried

out, one in the local simulator "aer_simulator"
and the other in the IBM quantum processor
"ibmqg_quito", which has five qubits in its su-
perconducting architecture. Both are run 20,000

times with the same parameters.

o W :

v H @ © H =

o W B =
. 000 %

Figure 2: Example of a developed quantum circuit

Equation of the circuit example in Eq. 1.

i pLn
W) =5,) (=N (1)
x=0 | y=0 |
i v (1)
Y))
y=0 Lx=0

Random Number Generation

In random number generation, the expected result
is that the number of repetitions of each element
is uniformly distributed. In this case, the parame-
ter of three qubits has been used, so that numbers
from O to 7 should be randomly generated. We
can verify that in the two performed runs (Fig.
3a and Fig. 3b) the results are similar; although
evidently, in the real quantum case there are in-
accuracies that give rise to the errors typical of

these physical systems.

QuantumSolver - Experimental Mode
QRand, aer simulator, [3], n_shots: 20000

0.129 0.129
0.122 0123 0124 g123 120 0124

0.12 1
0.08
0.04 1
0.00
s § 5§ § § § 5 7

(a) Using “aer_simulator”

Probabilities

QuantumSolver - Experimental Mode
QRand, ibmg_quito, [3], n_shots: 20000

0.16 1 - 0.148

0.12 1
0.08
0.04 1
0.00
S

Figure 3: Histograms of the QRand Algorithm

0.142

0.131
0.125 0.123
0.113 0.113
I I I |
~ o ~ =] ~ O
o ~ r~ (] O
S o S ~ ~ ~

e~y
P~
Py

Probabilities

(b) Using “ibmqg__quito”

Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm returns a string of
N zeros if the implemented oracle encodes a con-
stant function. Obtaining any other case should
be interpreted as a balanced function. In the simu-
lation (Fig. 4a), the 100% of executions correctly
determine the function type. In real quantum
hardware (Fig. 4b), considering that the func-
tion is determined as constant only when 1 zeros
are obtained, the obtained probability of success

is 99.984%.

QuantumSolver - Experimental Mode
Deutsch-Jozsa, aer simulator, ['balanced’, 4], n_shots: 20000

1.000

1.00 A

o
~
U

Probabilities
=
un
o

0.25 1

0.00 -
fh’
l"‘!.'
H
hf
(a) Using “aer_simulator”

QuantumSolver - Experimental Mode
Deutsch-Jozsa, ibmq_quito, ['balanced’, 4], n_shots: 20000

0.585

Probabilities

0.15 1

0.00 -

(b) Using “ibmg_quito”

Figure 4: Deutsch-Jozsa Histogram

Bernstein-Vazirani Algorithm

In the executions of the Bernstein-Vazirani algo-
rithm, the simulator (Fig. 5a) hits in all of them
the key hidden in the oracle. On IBM hardware
(Fig. 5b), it only reaches 61% attempts.

QuantumSolver - Experimental Mode
Bernstein-Vazirani, aer_simulator, ['0111'], n_shots: 20000

1.000
1.00 A

o
~
w1

Probabilities
o
()]
o

0.25 1

0.00 -

f'lq’c
~
o

(a) Using “aer_simulator”

QuantumSolver - Experimental Mode
Bernstein-Vazirani, ibmq_quito, ['0111'], n_shots: 20000

0.610

Probabilities
o
s
wu

o
w
o

0.15 1

0.078 0.0710.077

0.033
0.01%.008.0040.00%.009.00%.004]

0.00 -

(b) Using “ibmqg_quito”

Figure 5: Bernstein-Vazirani Histogram

Grover’s Algorithm

Grover's algorithm with parameter defining the
state marked "01" should find that element and
return it. Again, in the simulation (Fig. 6) a
success rate of 100% is obtained, while on cur-
rent quantum hardware it has been successful in
89.8% cases. The remaining cases have returned

untagged states.

QuantumSolver - Experimental Mode
Grover's Algorithm (2 Qubits), aer simulator, ['01'], n_shots: 20000

1.000

1.00 -
E 0.75
=
o
©
S 0.50 -
&

0.25 -

0.00 -

Y
(a) Using “aer_simulator”
QuantumSolver - Experimental Mode
Grover's Algorithm (2 Qubits), ibmqg_quito, ['01'], n_shots: 20000
1.00 -
0.898

0.75 -
wn
2
&=
e
© 0.50 -
O
a

0.25 -

0.071
0.025
0.00 - 0.007 |
§ & S ~

(b) Using “ibmqg_quito”

Figure 6: Grover's Algorithm Histogram

Quantum Teleportation

On this occasion, we can observe practically iden-
tical results in both execution cases (Fig. 7a and
Fig. 7b). This is due to the considerations seen in
its implementation, to make it suitable for IBM's
hardware [4].

QuantumSolver - Experimental Mode
Quantum Teleportation, aer _simulator, [0.7], n_shots: 20000

0.8 1
0.709

0.6
7]
2
=
©0.4-
L
o)
A 0.291

) .

0.0 -

o ~
(a) Using “aer_simulator”
QuantumSolver - Experimental Mode
Quantum Teleportation, ibmq_quito, [0.7], n_shots: 20000
0.8 1
0.708

0.6 1
wn
2
=
T 0.4
0
nE_ 0.292

) .

0.0 -

< ~

(b) Using “ibmq__quito”

Figure 7: Quantum Teleportation Histogram

A qubit with a 70% probability of being measured
at 0, and a 30% probability of being determined at
1, has been successfully teleported. By perform-
ing the experiment a considerably large number
of times, in this case 20,000, it can be seen how
the probability of obtaining these values has been

correctly encoded.

CHES 2022, September 18-22, Leuven, Belgium

Superdense Coding Protocol

Finally, using the superdense coding protocol
(SDC), we try to transmit the value "01", using a
single communication qubit. Again, the simulator
succeeds in all iterations of the execution while
the executions performed on the IBM hardware
obtain an 89.1% success rate (Fig. 8), achieving
very similar results to those obtained in the exe-

cution of Grover's algorithm.

QuantumSolver - Experimental Mode
Superdense Coding, aer simulator, ['01'], n _shots: 20000

1.000

1.00
E 0.75
=
Q
©
8 0.50
o

0.25 A

0.00 -

S
(a) Using “aer_simulator”
QuantumSolver - Experimental Mode
Superdense Coding, ibmg_quito, ['01'], n_shots: 20000
1.00
0.891

0.75 A
wn
3
=
© 0.50
0
o
a

0.25 A

0.070
0.030
0.00 - o
S & S <

(b) Using “ibmqg__quito”

Figure 8: SDC Histogram

Conclusions

Through various infographics, it has been possible
to develop a deep analysis of the implementations,
illustrating the results of the test runs and com-
paring executions on simulators and real quantum
hardware.

As future work, it is proposed to include the opti-
mization of the aforementioned implementations
and an analysis of several specific features of their
design, such as topology, calibration and use of
coupling map, which are important aspects for
decision-making in the selection of the used back-
ends. Finally, thanks to the open-source frame-
work Qiskit Metal, several verifications will be car-
ried out to validate the correct operation of the
implementations through different graphs and in-

tuitive interfaces that motivate learning.

Acknowledgment

This research has been supported by the Spanish
Ministry of Science, Innovation and Universities,
the State Research Agency and the European Re-
gional Development Fund under project RT12018-

097263-B-100, and the Cybersecurity Chair of Bin-
ter at the University of La Laguna.

References

[1] IBM, “Qiskit”: https://qiskit.org/.

[2] D. Escanez-Expésito, P. Caballero-Gil, F.
Martin-Fernandez, “QuantumSolver”: https://
github.com/alu0101238944/quantum-solver/.

[3] IBM, “IBM Quantum”:
https://quantum-computing.ibm.com/.

[4] IBM, “Quantum Teleportation - Deferred
Measurement":
https://qiskit.org/textbook/ch-algorithms/
teleportation.html#deferred-measurement.

https://qiskit.org/
https://github.com/alu0101238944/quantum-solver/
https://github.com/alu0101238944/quantum-solver/
https://quantum-computing.ibm.com/
https://qiskit.org/textbook/ch-algorithms/teleportation.html##deferred-measurement
https://qiskit.org/textbook/ch-algorithms/teleportation.html##deferred-measurement

