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Introduction

This work proposes an in-depth study on the per-
formance of many different quantum algorithms
executed on the hardware made available by Qiskit
[1] from IBM. In particular, it describes the results
of the quantum library QuantumSolver [2] based
on the Qiskit SDK, which allows to operate with
a wide variety of quantum algorithms that can be
run from a command line or a web interface, on

real quantum hardware and simulators.

Figure 1: QuantumSolver Logo

Specifically, in its current version, the library con-
tains six easy-to-execute predefined quantum al-
gorithms. In order to corroborate the correct op-
eration of all the developed algorithms and to test
IBM's real quantum hardware and simulators, the
obtained results have been compared with those
presented by IBM [3]. For all of them, two ex-
ecutions of the experimental mode are carried

out, one in the local simulator "aer_simulator"
and the other in the IBM quantum processor
"ibmqg_quito", which has five qubits in its su-
perconducting architecture. Both are run 20,000

times with the same parameters.
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Figure 2: Example of a developed quantum circuit

Equation of the circuit example in Eq. 1.
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Random Number Generation

In random number generation, the expected result
is that the number of repetitions of each element
is uniformly distributed. In this case, the parame-
ter of three qubits has been used, so that numbers
from O to 7 should be randomly generated. We
can verify that in the two performed runs (Fig.
3a and Fig. 3b) the results are similar; although
evidently, in the real quantum case there are in-
accuracies that give rise to the errors typical of

these physical systems.

QuantumSolver - Experimental Mode
QRand, aer simulator, [3], n_shots: 20000
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QuantumSolver - Experimental Mode
QRand, ibmg_quito, [3], n_shots: 20000
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Figure 3: Histograms of the QRand Algorithm
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(b) Using “ibmqg__quito”

Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm returns a string of
N zeros if the implemented oracle encodes a con-
stant function. Obtaining any other case should
be interpreted as a balanced function. In the simu-
lation (Fig. 4a), the 100% of executions correctly
determine the function type. In real quantum
hardware (Fig. 4b), considering that the func-
tion is determined as constant only when 1 zeros
are obtained, the obtained probability of success

is 99.984%.

QuantumSolver - Experimental Mode
Deutsch-Jozsa, aer simulator, ['balanced’, 4], n_shots: 20000

1.000

1.00 A

o
~
U

Probabilities
=
un
o

0.25 1

0.00 -
fh’
l"‘!.'
H
hf
(a) Using “aer_simulator”

QuantumSolver - Experimental Mode
Deutsch-Jozsa, ibmq_quito, ['balanced’, 4], n_shots: 20000
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Figure 4: Deutsch-Jozsa Histogram

Bernstein-Vazirani Algorithm

In the executions of the Bernstein-Vazirani algo-
rithm, the simulator (Fig. 5a) hits in all of them
the key hidden in the oracle. On IBM hardware
(Fig. 5b), it only reaches 61% attempts.

QuantumSolver - Experimental Mode
Bernstein-Vazirani, aer_simulator, ['0111'], n_shots: 20000
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(a) Using “aer_simulator”

QuantumSolver - Experimental Mode
Bernstein-Vazirani, ibmq_quito, ['0111'], n_shots: 20000
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(b) Using “ibmqg_quito”

Figure 5: Bernstein-Vazirani Histogram

Grover’s Algorithm

Grover's algorithm with parameter defining the
state marked "01" should find that element and
return it. Again, in the simulation (Fig. 6) a
success rate of 100% is obtained, while on cur-
rent quantum hardware it has been successful in
89.8% cases. The remaining cases have returned

untagged states.

QuantumSolver - Experimental Mode
Grover's Algorithm (2 Qubits), aer simulator, ['01'], n_shots: 20000
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Figure 6: Grover's Algorithm Histogram

Quantum Teleportation

On this occasion, we can observe practically iden-
tical results in both execution cases (Fig. 7a and
Fig. 7b). This is due to the considerations seen in
its implementation, to make it suitable for IBM's
hardware [4].

QuantumSolver - Experimental Mode
Quantum Teleportation, aer _simulator, [0.7], n_shots: 20000

0.8 1
0.709

0.6
7]
2
=
©0.4-
L
o)
A 0.291

) .

0.0 -

o ~
(a) Using “aer_simulator”
QuantumSolver - Experimental Mode
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(b) Using “ibmq__quito”

Figure 7: Quantum Teleportation Histogram

A qubit with a 70% probability of being measured
at 0, and a 30% probability of being determined at
1, has been successfully teleported. By perform-
ing the experiment a considerably large number
of times, in this case 20,000, it can be seen how
the probability of obtaining these values has been

correctly encoded.
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Superdense Coding Protocol

Finally, using the superdense coding protocol
(SDC), we try to transmit the value "01", using a
single communication qubit. Again, the simulator
succeeds in all iterations of the execution while
the executions performed on the IBM hardware
obtain an 89.1% success rate (Fig. 8), achieving
very similar results to those obtained in the exe-

cution of Grover's algorithm.

QuantumSolver - Experimental Mode
Superdense Coding, aer simulator, ['01'], n _shots: 20000

1.000

1.00
E 0.75
=
Q
©
8 0.50
o

0.25 A

0.00 -

S
(a) Using “aer_simulator”
QuantumSolver - Experimental Mode
Superdense Coding, ibmg_quito, ['01'], n_shots: 20000
1.00
0.891

0.75 A
wn
3
=
© 0.50
0
o
a

0.25 A

0.070
0.030
0.00 - o
S & S <

(b) Using “ibmqg__quito”

Figure 8: SDC Histogram

Conclusions

Through various infographics, it has been possible
to develop a deep analysis of the implementations,
illustrating the results of the test runs and com-
paring executions on simulators and real quantum
hardware.

As future work, it is proposed to include the opti-
mization of the aforementioned implementations
and an analysis of several specific features of their
design, such as topology, calibration and use of
coupling map, which are important aspects for
decision-making in the selection of the used back-
ends. Finally, thanks to the open-source frame-
work Qiskit Metal, several verifications will be car-
ried out to validate the correct operation of the
implementations through different graphs and in-

tuitive interfaces that motivate learning.
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