
Qiskit Quantum Hardware Testing via
Implementations of QKD Algorithms

Daniel Escánez-Expósito1 Pino Caballero-Gil1 Francisco Martín-Fernández2

1University of La Laguna, Tenerife, Spain
jdanielescanez@gmail.com, pcaballe@ull.edu.es

2IBM Research, NY, USA
paco@ibm.com

Introduction

This work proposes an in-depth study on the per-
formance of many different quantum algorithms
executed on the hardware made available by Qiskit
[1] from IBM. In particular, it describes the results
of the quantum library QuantumSolver [2] based
on the Qiskit SDK, which allows to operate with
a wide variety of quantum algorithms that can be
run from a command line or a web interface, on
real quantum hardware and simulators.

Figure 1: QuantumSolver Logo

Specifically, in its current version, the library con-
tains six easy-to-execute predefined quantum al-
gorithms. In order to corroborate the correct op-
eration of all the developed algorithms and to test
IBM’s real quantum hardware and simulators, the
obtained results have been compared with those
presented by IBM [3]. For all of them, two ex-
ecutions of the experimental mode are carried
out, one in the local simulator "aer_simulator"
and the other in the IBM quantum processor
"ibmq_quito", which has five qubits in its su-
perconducting architecture. Both are run 20,000
times with the same parameters.

Figure 2: Example of a developed quantum circuit

Equation of the circuit example in Eq. 1.

|ψ⟩ = 1

2n

2n−1∑
x=0

(−1)f(x)


2n−1∑
y=0

(−1)x·y|y⟩



=
1

2n

2n−1∑
y=0


2n−1∑
x=0

(−1)f(x)(−1)x·y
 |y⟩

(1)

Random Number Generation

In random number generation, the expected result
is that the number of repetitions of each element
is uniformly distributed. In this case, the parame-
ter of three qubits has been used, so that numbers
from 0 to 7 should be randomly generated. We
can verify that in the two performed runs (Fig.
3a and Fig. 3b) the results are similar; although
evidently, in the real quantum case there are in-
accuracies that give rise to the errors typical of
these physical systems.

(a) Using “aer_simulator”

(b) Using “ibmq_quito”

Figure 3: Histograms of the QRand Algorithm

Deutsch-Jozsa Algorithm
The Deutsch-Jozsa algorithm returns a string of
n zeros if the implemented oracle encodes a con-
stant function. Obtaining any other case should
be interpreted as a balanced function. In the simu-
lation (Fig. 4a), the 100% of executions correctly
determine the function type. In real quantum
hardware (Fig. 4b), considering that the func-
tion is determined as constant only when n zeros
are obtained, the obtained probability of success
is 99.984%.

(a) Using “aer_simulator”

(b) Using “ibmq_quito”

Figure 4: Deutsch-Jozsa Histogram

Bernstein-Vazirani Algorithm
In the executions of the Bernstein-Vazirani algo-
rithm, the simulator (Fig. 5a) hits in all of them
the key hidden in the oracle. On IBM hardware
(Fig. 5b), it only reaches 61% attempts.

(a) Using “aer_simulator”

(b) Using “ibmq_quito”

Figure 5: Bernstein-Vazirani Histogram

Grover’s Algorithm
Grover’s algorithm with parameter defining the
state marked "01" should find that element and
return it. Again, in the simulation (Fig. 6) a
success rate of 100% is obtained, while on cur-
rent quantum hardware it has been successful in
89.8% cases. The remaining cases have returned
untagged states.

(a) Using “aer_simulator”

(b) Using “ibmq_quito”

Figure 6: Grover’s Algorithm Histogram

Quantum Teleportation
On this occasion, we can observe practically iden-
tical results in both execution cases (Fig. 7a and
Fig. 7b). This is due to the considerations seen in
its implementation, to make it suitable for IBM’s
hardware [4].

(a) Using “aer_simulator”

(b) Using “ibmq_quito”

Figure 7: Quantum Teleportation Histogram

A qubit with a 70% probability of being measured
at 0, and a 30% probability of being determined at
1, has been successfully teleported. By perform-
ing the experiment a considerably large number
of times, in this case 20,000, it can be seen how
the probability of obtaining these values has been
correctly encoded.

Superdense Coding Protocol
Finally, using the superdense coding protocol
(SDC), we try to transmit the value "01", using a
single communication qubit. Again, the simulator
succeeds in all iterations of the execution while
the executions performed on the IBM hardware
obtain an 89.1% success rate (Fig. 8), achieving
very similar results to those obtained in the exe-
cution of Grover’s algorithm.

(a) Using “aer_simulator”

(b) Using “ibmq_quito”

Figure 8: SDC Histogram

Conclusions
Through various infographics, it has been possible
to develop a deep analysis of the implementations,
illustrating the results of the test runs and com-
paring executions on simulators and real quantum
hardware.
As future work, it is proposed to include the opti-
mization of the aforementioned implementations
and an analysis of several specific features of their
design, such as topology, calibration and use of
coupling map, which are important aspects for
decision-making in the selection of the used back-
ends. Finally, thanks to the open-source frame-
work Qiskit Metal, several verifications will be car-
ried out to validate the correct operation of the
implementations through different graphs and in-
tuitive interfaces that motivate learning.

Acknowledgment
This research has been supported by the Spanish
Ministry of Science, Innovation and Universities,
the State Research Agency and the European Re-
gional Development Fund under project RTI2018-
097263-B-I00, and the Cybersecurity Chair of Bin-
ter at the University of La Laguna.

References
[1] IBM, “Qiskit”: https://qiskit.org/.
[2] D. Escánez-Expósito, P. Caballero-Gil, F.

Martín-Fernández, “QuantumSolver”: https://
github.com/alu0101238944/quantum-solver/.

[3] IBM, “IBM Quantum”:
https://quantum-computing.ibm.com/.

[4] IBM, “Quantum Teleportation - Deferred
Measurement”:
https://qiskit.org/textbook/ch-algorithms/
teleportation.html#deferred-measurement.

CHES 2022, September 18–22, Leuven, Belgium

https://qiskit.org/
https://github.com/alu0101238944/quantum-solver/
https://github.com/alu0101238944/quantum-solver/
https://quantum-computing.ibm.com/
https://qiskit.org/textbook/ch-algorithms/teleportation.html##deferred-measurement
https://qiskit.org/textbook/ch-algorithms/teleportation.html##deferred-measurement

